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The problem of completeness of a system of natural oscillations for an inviscid 
gas in proper or external gravity field is discussed. It is shown that such com- 
pleteness occurs for small (adiabatic) oscillations of a gravitating gaseous sphere 
about its position of mechanical equilibrium. The proof (which can be used in 
the cases of separation of variables) is reduced to the general theorem of com- 
pleteness for self-conjugate operators. 

1. Let an inviscid gas filling a region G be maintained in the state of mechanical 
equilibrium by a eravitational field. Then 

-$ grad PO + grad V0 = 0 

c 
PO(Y) 

J’o (x) = - r ~ , x _ y , dy + @ (x), x = (21, x2, 23) 

(1.1) 

where Y is the gravitational constant and 0 (x) is the potential of the external field. 
On the free boundaries of G we have p0 = 0 and PO = 0. The hydrodynamic equations 

linearized near the state of equilibrium are 

au / at = -_(I / po) grad p1 + (pl / pi) grad p. - grad V, 

8Pl 
-= 
at - div (pou), -$ = - ukz 

PO = P (PC, SC), Pl= (~)aPl([+$),Sl 

r1 (x) = - ‘I 
s 

, ;$+dy 

Differentiating (1.2) with respect to t and eliminating p1 and sl, we obtain 

1 
azu / at2 = - Lu 

1 

(1.2) 

Lu=-$J [grad(adivu)-f grad(b.u)] +$bdivu + 

&&I -+ grad 1’1’ f DU + grad VI’ 

where 

b=gradpo, Qjk-3 2 $ 

(1.3) 

v; = y s div (PO (Y) U(Y)) dy 

IX---Y1 

It is easy to verify that the operator L is formally self-conjugate (symmetric) in the 
sense of the following scalar product: 
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@‘“), = s PO (X) 5 .k (x) ;k tx) dx 

k=l 
(1.6) 

To be able to utilize the general theorem on completeness we must prove the real self- 

conjugacy, i.e. we must show that the domains of definition of L and L* coincide. 
The difficulties which are experienced are connected with the strong degeneracy of 

the differential operator D (see (1.3)). In particular, the characteristic determinant 

of the major terms of D is equal to zero. Degeneration to the system Du = AU makes 
the general theorems on elliptic equations inapplicable (this is what makes this problem 
interesting from the mathematical point of view). In addition to D (1.3) also contains 
the integral term Vi’. We shall show that this complication does not affect the feasibility 

of application of the general theorem on completeness of eigenfunctions. 

In fact, let HP be a space of functions u (x) such that 

IIull~=~Po(X~IU(X~I~dX<~ 

with the scalar product (1.6). Let 

Fu = grad 
iS ixLyl div(P.l(y)u(y))dy 1 (1.7) 

For the smooth function u (x) we rewrite (1.7) as follows : 

ru = 
s 

I (x - y) po (y) u (y) dy (1 .S) 

where the matrix 
9 1 

I = (l,i() = -- 
arjaxk I x - Y I (1.9) 

The operator I’ written in the form (1.8) is bounded, i. e. is defined everywhere in H,,. 

Indeed, if u E H,,,then o0 u E H (G), where H (C) is a Hilbert space with the usual 

norm 
Ilull =i Iu(x)ladx 

The kernel I generates a bounded operator in H (C) (see Cl]), therefore we have 

II ru Ilp < c II ru II d Cl II PN II G c2 II u II,, 

We thus see that in investigating the domain of definition of the (unbounded) operator 

L = D +?I’, we can consider its differential part D (see (1.3)). 
In contrast to the classical oscillation problems, Eqs.(l. 3) have an aboundant famiIy 

of null eigenfunctions. Such are all u (x) for which 

div (p u) = 0, 
1 

grad p B 
‘VI= u1 1 gradp,) 1 =’ 1 

(1.10) 

Each of these u (x) has a corresponding motion along an equipotential surface (V, (x)= 

const) for which p1 (x) r0. Let HP + be an orthogonal complement of the functions 

(1. IO) in H, . The problem consists of proving the completeness in HP* of the remain- 
ing “nontrivial” eigenfunctions. 

2. Let us now consider a gaseous sphere of radius R (p. = p. (r) E 0 when r >, R). 

We assume that: (1) in some neighborhood of the boundary P > R - 6 the adiabatic 
index is constant 

(a In p / a In Pjr = x (2.1) 
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and, (2) on approaching the boundary pO, it rapidly 

PO (r) := C ((Ar)” -t o (Ar)“), v > 

tends to zero 

1, Ar= R -r (2.2) 

Here we naturally assume a certain regularity in behavior of PO and PO when r - R 
(see notes Sect. 5). We note that (2.2) always holds, provided that the equilibrium is 
stable and x<2. In fact, for the convection not to appear, it is necessary that the ent- 
ropy a0 (r) does not decrease with increasing r (see e. g. [Z], Sect. 4). Therefore for 

r>R-6. 
On theother hand (see (1.1)) PO > CPoX 

1 
pope’= - Vo’, Vo’ (R) # 0 (2.3) 

consequently 

PO fr) G C’r (Ar) ‘+’ PO (7) < Ca(ArfjY 
1 

y=x 

On separating the variables we obtain a system with a singularity for r = R and a prob- 

lem of asymptotic boundary conditions with r -+ R arises. 
We find that formally, within the framework of the theory of self-conjugate operators, 

no boundary condition is required at all. To be more precise, when (2.2) holds, the 

boundary condition is satisfied by the requirement that u E H,. Section 3 deals with 
the proof of this assertion. 

3, For a sphere the conditions (1.10) assume the form uT = 0, div u = 0. In the 
space HP+ , Z+ is arbitrary and the following condition holds : 

%I 
--&,si+o acp 

(More accurately, HP + is the closure of the set of smooth functions satisfying this con- 

hi tion). 
We set 

The operator L = D + yl? (see (1.3) and (1.7)) generates on the functions (3.1) a one- 

dimensional integro-differential operator 

L(‘) = I)(‘) + @‘) 

where (see (1.4)) 

(3.3) 

(3.4) 

The following expression corresponds to the scalar product (1.6): 
R 

(W.&f = (w*o)pl = 
s 

po (r) r* [WI&I + 1 (I + 1) m%] dr 
0 

(3.5) 

We denote the space w = (wit w%) with the scalar product (3.5) by Hi’) (when 1 = 0 it 
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is necessary to consider the space H, tot of the scalar functions w1 (r) , and the first line 

of (3.3) only. The operator I’(*) is bounded self-conjugate in H$, and the operator D@) 
is formally self-conjugate in the sense of (3.5), i. e. 

(j$z)w.o) - (w.D(l)o) = lii r2u (r) (z& - &I)I~~-’ 

( 5= 
1 (2 + 1) Jf-$++- r oa 

1 

(3.6) 

The largest family of functions on which D@ can be considered consists of all w E 
H$‘, for which D@) w E Eg’. We shall show that in this largest region D(‘) (and there- 
fore L@)) is symmetric, i. e. the right-hand side of (3.6) is equal to zero. In accordance 
with the general principles (see [3]) it is sufficient to prove that no solution D(l) w = iw 

(I) exists such that w E H, . If such a function exists, then (z is given by (3.2)) 

(3.7) 

The integral in the left-hand side is real, and a proof that the boundary terms vanish 
when E~ - 0 and a, - 0 will lead to contradiction. The system D(z) w = Iw can be 
reduced, for any fixed h # 0 , to the form 

dW 

dr = ‘4 (4 w, “w=* 3_B(r) 

(B fr) is a smooth function in the neighborhood of r = R.) The ~rnpu~tio~ yield the 

following results for the eigenvalues d_1 : p, = 0 and pz = - Y, where Y is the power 
index given in (2.2). Therefore we have two particular solutions 

w(1) (r) = C(l) + 0 (I), w@) (r) = (Ar)-’ (C@) Jr o (1)) (3 .Q) 

If Y > 1, from the condition D(~) w = iw, w E HF) it follows that w(r) = 0 (1) when 
r - R . Then from (3.8) we have ] ZL$ ] < C I Ar and 

It remains to note that a = xpo when r > R - 6 and, that po (r) = 0 ((AF)“‘~) by 

virtue of (2.2) and (2.3). Therefore r2 a (r) z (r)& (r) - 0 when r --+ R. Similarly we 

can prove that the boundary terms in (3.7) (and therefore in (3.6)) tend to zero as 
El --+ 0. 

Thus for D(‘j defined on its maximum domain of definition, DC’) = (D(‘))* Since. 
I’@) is bounded on the same domain, ~(1) = (L(‘)) * and the general theorem on the 
completeness of eigenfunctions is applicable. 

Since only the oscillations of a limited volume of gas are considered, it would be 
reasonable to expect a discrete spectrum of eigenvalues. We should however stress that 
the property of discreteness does not follow from any standard theorems since the bound- 
ary is singular (for r = R) and must be proved separately. 

The system D(I) w = hw has one second-order equation and one first-order equation. 
It is however degenerate ; when h # 0 it reduces to (3.8). while when h = 0. it has a 
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unique solution w = 0. It is the degeneracy that causes the eigenvalues of D(‘) (and 
L(t)) to have not only w but also zero as their limiting points. This has been apparent 
for a long time to physicists investigating the spectrum of this problem (see e.g. [4]). 

4. Setting together everything that has been said in Sects. 1 - 3, we obtain the fol- 
lowing theorem. 

Theorem. bet a gaseous sphere of radius R be in the state of equilibrium in its 
own gravitational field, and let 

PO (4 - c (R - r)Y, v>l when r-+R (4.1) 

Then any vector function u (x) for which 

~PJ(x)lu(x)/~rE*<~ (4.2) 

can be expanded into a series of the form 

u (x) = (+ ua, UIof = $0 (x) + 2 c *mn$WI (=) (4.3) 

Here $:lmn (x) ,iWhrf 
l,m,n 

and ‘lo (x) are solutions of the equation (1.3) describing small 

oscillations and written for the velocity components. The behavior of ~0 (r) in the con- 
dition (4.1) must be sufficiently\ regular (see Sect. 5). 

Notes. The family \I’~ (2) depends on a single arbitrary function. The smooth func- 
tions go (2) have the form 

~~~~~~~,~ g, --& g=g(r*Q,cp) 

and the remaining JS~ represent the limits of the above functions in the sense of the met- 

ric (4.2). The nontrivial eigenfunctions have the form (see Sect. 3) 

(O,(i?l<Z, o<z<w, O<n<=l 

and the series (4.3) converges, generally speaking, in the mean (in the sense of the met- 

ric (4.2) )* 

5. Notes. (Re Sect.1). The systems (1.2) and (1.3) are not equivalent. The sys- 
tem (1.2) has nonzero stationary solutions for which u (x) E 0. (These solutions arise 
because of the presence of the similarity transformations which change one solution of 

(1.1) into another). They have a corresponding trivial solution of (1.3) u (x) E 0. Con- 

versely however, if we assume that Lq (x) = 0, then u (x, t) = cp (z) t is a solution of 
(1.3), but there is no ~rres~nding expression in (1.2). Finally, there is a reciprocal 
one-to-one correspondence between the eigenfunctions of (1.2) and (1.3) possessing non- 
zero eigenvalues. 

(Re Sect. 2). Strictly speaking, the reference to standard theorems of the theory of dif- 

ferential (nondegenerate) operators is not valid, Carrying out all the proofs for the dege- 
nerate case under consideration we obtain an exact description of the domain of defini- 
tion 8 (D(‘)). Namely, w E D (II(‘)) if: (i) ~1’ and z’ exist and are locally square 
integrable and (ii) the integrals (for z see (3.2)) 

converge. 0 

R 2 
dr (az + bwl) + bz -/- ‘IN 

I 
dr 
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We note that the derivative wa’ need not exist, The proofs are fairly straightforward 

(see [2]) and are therefore not given here. 
Another method of overcoming the difficulties connected with the degeneracy is suit- 

able for the case of an external field. Here the system L(r) w = hw is reduced to a sin- 
gle equation and highly special theorems on completeness are used. This method is used 

in C53. 
(Re Sect. 3). The eigenvalues A_1 are used to judge the behavior of the complete sys- 

tem (3.8). For (3.9) to hold it is sufficient that 
R 

s 
IBjk(r)Idr<m! j,k=l,2 (5 i) 

Let us write out the elements of the matrix A = A (r, h) 

2 b 
Jhl=~+;' 

APor 
&=a- 

l(l + 1) 
r 

b @or)’ , ‘422=-y+- 
P0r 

Expressions (5.1) are satisfied if (with x = const) 

b 
- = s + 0 ((Ar)?, a 

+ = 2 + 0 ((AT)-=), a<1 

In particular, when r = R , it is sufficient for the functions p. I p’ and PO / PO’ to be dif- 

ferentiable. 
(Re Sects. 2 and 3). The concept of a “physical” boundary condition at the free bound- 

ary was not used at all. It is therefore expedient to explain the connection between the 
conditions that u, Lu E HP which are utilized here and the requirement that p ---) 0 as 

r -+ R. The formulas of Sects. 2 and 3 yield the following assertion. 

Let the following be true for the solution of (1.2) 

s 
PO I u (x, t) I2 dx < 00, 

I 
oPoIut,(x, QFdx< 00 

and let (2.2) hold. Then every term of the expansion ap, / at = Z IIzm(r, t) Yl,.,, (0, q) 

tends to zero as r + R. 
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